Evaluation Pipeline

Use eval_pipeline.py or the raw version of the code below to evaluate the model. Make sure to set the dataset and model path.


import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from transformers import get_scheduler
from datasets import load_dataset

data_path = ""
model_path = ""
data_files = {"train": "train_data.csv", "validation": "val_data.csv", "test": "test_data.csv"}

dataset_train = load_dataset(data_path, data_files=data_files, split="train")
dataset_val = load_dataset(data_path, data_files=data_files, split="validation")
dataset_test = load_dataset(data_path, data_files=data_files, split="test")

train_loader = DataLoader(dataset_train, batch_size=16, shuffle=True)
test_loader = DataLoader(dataset_test, batch_size=16)

class CustomModel:
    def __init__(self, model_name="bert-base-uncased", num_labels=2, lr=5e-5, epochs=4, max_len=128):
        """
        Initialize the custom model with tokenizer, optimizer, scheduler, and training parameters.
        Args:
            model_name (str): Name of the pretrained BERT model.
            num_labels (int): Number of labels for the classification task.
            lr (float): Learning rate for the optimizer.
            epochs (int): Number of epochs for training.
            max_len (int): Maximum token length for sequences.
        """
        self.model_name = model_name
        self.num_labels = num_labels
        self.epochs = epochs
        self.max_len = max_len

        # Load tokenizer and model
        self.tokenizer = BertTokenizer.from_pretrained(model_name)
        self.model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)

        # Define optimizer
        self.optimizer = AdamW(self.model.parameters(), lr=lr)

        # Scheduler placeholder
        self.scheduler = None

        # Device setup
        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        self.model.to(self.device)

    def setup_scheduler(self, train_loader):
        """
        Setup a learning rate scheduler based on training data.
        Args:
            train_loader (DataLoader): Training data loader.
        """
        num_training_steps = len(train_loader) * self.epochs
        self.scheduler = get_scheduler(
            "linear", optimizer=self.optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
        )

    def tokenize_batch(self, texts):
        """
        Tokenize a batch of text inputs.
        Args:
            texts (list[str]): List of text strings to tokenize.
        Returns:
            dict: Tokenized inputs with attention masks and input IDs.
        """
        return self.tokenizer(
            texts,
            padding=True,
            truncation=True,
            max_length=self.max_len,
            return_tensors="pt"
        )

    def train(self, train_loader):
        """
        Train the model with raw text inputs and labels.
        Args:
            train_loader (DataLoader): Training data loader containing text and labels.
        """
        self.model.train()
        for epoch in range(self.epochs):
            epoch_loss = 0
            for batch in train_loader:
                texts, labels = batch['title'], batch['labels']  # Assuming each batch is (texts, labels)
                labels = labels.to(self.device)

                # Tokenize the batch
                tokenized_inputs = self.tokenize_batch(texts)
                tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()}
                tokenized_inputs['labels'] = labels

                # Forward pass and optimization
                outputs = self.model(**tokenized_inputs)
                loss = outputs.loss
                loss.backward()
                self.optimizer.step()
                self.scheduler.step()
                self.optimizer.zero_grad()
                epoch_loss += loss.item()
            print(f"Epoch {epoch + 1}/{self.epochs}, Loss: {epoch_loss / len(train_loader):.4f}")

    def evaluate(self, test_loader):
        """
        Evaluate the model with raw text inputs and labels.
        Args:
            test_loader (DataLoader): Test data loader containing text and labels.
        Returns:
            Tuple: True labels and predicted labels.
        """
        self.model.eval()
        y_true, y_pred = [], []
        with torch.no_grad():
            for batch in test_loader:
                texts, labels = batch['title'], batch['labels']  # Assuming each batch is (texts, labels)
                labels = labels.to(self.device)

                # Tokenize the batch
                tokenized_inputs = self.tokenize_batch(texts)
                tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()}

                # Forward pass
                outputs = self.model(**tokenized_inputs)
                logits = outputs.logits
                predictions = torch.argmax(logits, dim=-1)
                y_true.extend(labels.tolist())
                y_pred.extend(predictions.tolist())
        return y_true, y_pred

    def save_model(self, save_path):
        """
        Save the model locally in Hugging Face format.
        Args:
            save_path (str): Path to save the model.
        """
        self.model.save_pretrained(save_path)
        self.tokenizer.save_pretrained(save_path)

    def push_model(self, repo_name):
        """
        Push the model to the Hugging Face Hub.
        Args:
            repo_name (str): Repository name on Hugging Face Hub.
        """
        self.model.push_to_hub(repo_name)
        self.tokenizer.push_to_hub(repo_name)

custom_model = CustomModel(model_name=model_path, num_labels=2, lr=5e-5, epochs=4)
y_true, y_pred = custom_model.evaluate(test_loader)

print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
print("Classification Report:\n", classification_report(y_true, y_pred))