Evaluation Pipeline
Use eval_pipeline.py or the raw version of the code below to evaluate the model. Make sure to set the dataset and model path.
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from transformers import get_scheduler
from datasets import load_dataset
data_path = ""
model_path = ""
data_files = {"train": "train_data.csv", "validation": "val_data.csv", "test": "test_data.csv"}
dataset_train = load_dataset(data_path, data_files=data_files, split="train")
dataset_val = load_dataset(data_path, data_files=data_files, split="validation")
dataset_test = load_dataset(data_path, data_files=data_files, split="test")
train_loader = DataLoader(dataset_train, batch_size=16, shuffle=True)
test_loader = DataLoader(dataset_test, batch_size=16)
class CustomModel:
def __init__(self, model_name="bert-base-uncased", num_labels=2, lr=5e-5, epochs=4, max_len=128):
"""
Initialize the custom model with tokenizer, optimizer, scheduler, and training parameters.
Args:
model_name (str): Name of the pretrained BERT model.
num_labels (int): Number of labels for the classification task.
lr (float): Learning rate for the optimizer.
epochs (int): Number of epochs for training.
max_len (int): Maximum token length for sequences.
"""
self.model_name = model_name
self.num_labels = num_labels
self.epochs = epochs
self.max_len = max_len
# Load tokenizer and model
self.tokenizer = BertTokenizer.from_pretrained(model_name)
self.model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
# Define optimizer
self.optimizer = AdamW(self.model.parameters(), lr=lr)
# Scheduler placeholder
self.scheduler = None
# Device setup
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.model.to(self.device)
def setup_scheduler(self, train_loader):
"""
Setup a learning rate scheduler based on training data.
Args:
train_loader (DataLoader): Training data loader.
"""
num_training_steps = len(train_loader) * self.epochs
self.scheduler = get_scheduler(
"linear", optimizer=self.optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
)
def tokenize_batch(self, texts):
"""
Tokenize a batch of text inputs.
Args:
texts (list[str]): List of text strings to tokenize.
Returns:
dict: Tokenized inputs with attention masks and input IDs.
"""
return self.tokenizer(
texts,
padding=True,
truncation=True,
max_length=self.max_len,
return_tensors="pt"
)
def train(self, train_loader):
"""
Train the model with raw text inputs and labels.
Args:
train_loader (DataLoader): Training data loader containing text and labels.
"""
self.model.train()
for epoch in range(self.epochs):
epoch_loss = 0
for batch in train_loader:
texts, labels = batch['title'], batch['labels'] # Assuming each batch is (texts, labels)
labels = labels.to(self.device)
# Tokenize the batch
tokenized_inputs = self.tokenize_batch(texts)
tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()}
tokenized_inputs['labels'] = labels
# Forward pass and optimization
outputs = self.model(**tokenized_inputs)
loss = outputs.loss
loss.backward()
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
epoch_loss += loss.item()
print(f"Epoch {epoch + 1}/{self.epochs}, Loss: {epoch_loss / len(train_loader):.4f}")
def evaluate(self, test_loader):
"""
Evaluate the model with raw text inputs and labels.
Args:
test_loader (DataLoader): Test data loader containing text and labels.
Returns:
Tuple: True labels and predicted labels.
"""
self.model.eval()
y_true, y_pred = [], []
with torch.no_grad():
for batch in test_loader:
texts, labels = batch['title'], batch['labels'] # Assuming each batch is (texts, labels)
labels = labels.to(self.device)
# Tokenize the batch
tokenized_inputs = self.tokenize_batch(texts)
tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()}
# Forward pass
outputs = self.model(**tokenized_inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
y_true.extend(labels.tolist())
y_pred.extend(predictions.tolist())
return y_true, y_pred
def save_model(self, save_path):
"""
Save the model locally in Hugging Face format.
Args:
save_path (str): Path to save the model.
"""
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
def push_model(self, repo_name):
"""
Push the model to the Hugging Face Hub.
Args:
repo_name (str): Repository name on Hugging Face Hub.
"""
self.model.push_to_hub(repo_name)
self.tokenizer.push_to_hub(repo_name)
custom_model = CustomModel(model_name=model_path, num_labels=2, lr=5e-5, epochs=4)
y_true, y_pred = custom_model.evaluate(test_loader)
print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
print("Classification Report:\n", classification_report(y_true, y_pred))